TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 W B D 126 F K

Dual Bus Switch with Level Shift

The TC7WBD126FK is a low on-resistance, high-speed CMOS dual-bit bus switch. This bus switch allows the connections or disconnections to be made with minimal propagation delay while maintaining Low power dissipation which is the feature of CMOS.

When output enable (OE) is at High level, the switch is on; when at Low level, the switch is off.

The internal diode on the power supply line allows signal range of $3.3 \mathrm{~V} \sim 5 \mathrm{~V}$.

All inputs are equipped with protector circuits to protect the device from static discharge.

Weight: 0.01 g (typ.)

Features

- Operating voltage: VCC $=4.5 \sim 5.5 \mathrm{~V}$
- High speed operation: $\mathrm{t}_{\mathrm{pd}}=0.25 \mathrm{~ns}$ (max)
- Ultra-low on resistance: RON $=5 \Omega$ (typ.)
- Electro-static discharge (ESD) performance: $\pm 200 \mathrm{~V}$ or more (EIAJ)
± 2000 V or more (MIL)
- TTL level input (control input)
- Package: US8

Pin Assignment (top view)

[^0]
Truth Table

Inputs	Function
OE	
L	Disconnect
H	A port $=$ B port

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Power supply range	V_{CC}	$-0.5 \sim 7.0$	V
DC input voltage	V_{IN}	$-0.5 \sim 7.0$	V
DC switch voltage	V_{S}	$-0.5 \sim 7.0$	V
Input diode current	I_{IK}	-50	mA
Continuous channel current	I_{S}	128	mA
Power dissipation	P_{D}	200	mW
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ current	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}$	± 100	mA
Storage temperature	$\mathrm{T}_{\mathrm{Stg}}$	$-65 \sim 150$	${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	$4.5 \sim 5.5$	V
Input voltage	V_{IN}	$0 \sim 5.5$	V
Switch voltage	V_{S}	$0 \sim 5.5$	V
Operating temperature	$\mathrm{T}_{\mathrm{opr}}$	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Input rise and fall time	$\mathrm{dt} / \mathrm{dv}$	$0 \sim 10$	$\mathrm{~ns} / \mathrm{V}$

Electrical Characteristics

DC Characteristics ($\mathrm{Ta}=-\mathbf{4 0 \sim 8 5}{ }^{\circ} \mathrm{C}$)

Characteristics		Symbol	Test Condition		Vcc (V)	Min	Typ. (Note1)	Max	Unit
Input voltage	"H" level	V_{IH}	-		4.5~5.5	2.0	-	-	V
	"L" level	$\mathrm{V}_{\text {IL }}$	-		4.5~5.5	-	-	0.8	
High-level output voltage		V_{OH}	Figure 4		-	-	-	-	-
Input leakage current		IIN	$\mathrm{V}_{\mathrm{IN}}=0 \sim 5.5 \mathrm{~V}$		5.5	-	-	± 1.0	$\mu \mathrm{A}$
Off-state leakage current (switch off)		ISZ	$\mathrm{A}, \mathrm{B}=0 \sim 5.5 \mathrm{~V}, \mathrm{OE}=\mathrm{GND}$		0~5.5	-	-	± 1.0	$\mu \mathrm{A}$
ON resistance	(Note2)	RON	$\mathrm{V}_{\text {IS }}=0 \mathrm{~V}$	$\mathrm{I}_{\text {I }}=30 \mathrm{~mA}$	4.5	-	5	7	Ω
				$\mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$	4.5	-	5	7	
			$\mathrm{V}_{\text {IS }}=2.4 \mathrm{~V}, \mathrm{I}_{\text {IS }}=15 \mathrm{~mA}$		4.5	-	35	50	
Quiescent supply current		Icc	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {OUT }}=0 \end{aligned}$	Switch ON	5.5	-	-	1.5	mA
		Switch OFF		5.5	-	-	10	$\mu \mathrm{A}$	
		$\Delta \mathrm{l}$ CC	$\mathrm{V}_{\text {IN }}=3.4 \mathrm{~V}$ (one input) \quad (Note3)		5.5	-	-	2.5	mA

Note1: Typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
Note2: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

Note3: Quiescent supply current at $\mathrm{V}_{\mathrm{CC}}=3.4 \mathrm{~V}$ will be sum of I_{CC} and $\Delta \mathrm{I} \mathrm{CC}$.
AC Characteristics $\left(\mathrm{Ta}=-40 \sim 85^{\circ} \mathrm{C}\right)$

Characteristics	Symbol	Test Condition			Min	Max	Unit
Propagation delay time (bus to bus)	$\begin{aligned} & \mathrm{t}_{\mathrm{pLH}} \\ & \mathrm{t}_{\mathrm{pHL}} \\ & \hline \end{aligned}$	Figure 1, Figure 2	(Note4)	4.5	-	0.25	ns
Output enable time	$\begin{array}{r} \hline \mathrm{t}_{\mathrm{pzL}} \\ \mathrm{t}_{\mathrm{pzH}} \\ \hline \end{array}$	Figure 1, Figure 3		4.5	-	4.5	ns
Output disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{pLZ}} \\ & \mathrm{t}_{\mathrm{pHZ}} \end{aligned}$	Figure 1, Figure 3		4.5	-	5.5	ns

Note4: The propagation delay time is calculated by the RC (on-resistance and load capacitance) time constant.
Capacitive Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Characteristics	Symbol	Test Condition		V CC (V)	Typ.	Unit
Control pin input capacitance	$\mathrm{C}_{\text {IN }}$		(Note5)	5.0	3	pF
Switch terminal capacitance	$\mathrm{Cl}_{1 / \mathrm{O}}$	$\mathrm{OE}=\mathrm{GND}$	(Note5)	5.0	10	pF

Note5: This parameter is guaranteed by design.

AC Test Circuit

Parameter	Switch
$\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$	Open
$\mathrm{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pZL}}$	7.0 V
$\mathrm{t}_{\mathrm{pHZ}}, \mathrm{t}_{\mathrm{p} Z \mathrm{H}}$	Open

Figure 1

AC Waveform

Figure $2 \mathbf{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}$

Figure 3 $\mathbf{t}_{\mathrm{pLZ}}, \mathrm{t}_{\mathrm{pHz}}, \mathrm{t}_{\mathrm{pzL}}, \mathrm{t}_{\mathrm{pZH}}$

$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{cc}}$ Characteristics (typ.)

Figure 4

Package Dimensions

SSOP8-P-0.50A Unit : mm

Weight: 0.01 g (typ.)

[^0]: - TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 - The products described in this document are subject to the foreign exchange and foreign trade laws.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 - The information contained herein is subject to change without notice.

